Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems
نویسندگان
چکیده
This paper proposes a new, metaheuristic optimization technique, Artificial Gorilla Troops Optimization (GTO), for hybrid power system with photovoltaic (PV) and wind energy (WE) sources, solving the probabilistic optimum flow (POPF) issue. First, selected algorithm is developed evaluated such that it applies to solve classical (OPF) approach total fuel cost as objective function. Second, proposed used POPF, including PV WE considering uncertainty of these renewable sources (RESs). The performance suggested was confirmed using standard test systems IEEE 30-bus 118-bus. Different scenarios involving different sets fixed variable loads were considered in this study. comparison obtained results from other algorithms mentioned literature has efficiency providing optimal solutions system. Furthermore, showed penetration significantly reduces
منابع مشابه
Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOptimal design of hybrid renewable energy systems using simulation optimization
A hybrid renewable energy system (HRES) provides a viable solution for electrification of remote areas when grid extension is impossible or uneconomical. Such a system has several power stations and each of which includes photovoltaics (PV) and wind power generators, along with a diesel power generator as backup when renewable energy supply is insufficient. While the HRES is attractive due to t...
متن کاملCrisscross Optimization Algorithm and Monte Carlo Simulation for Solving Optimal Distributed Generation Allocation Problem
Distributed generation (DG) systems are integral parts in future distribution networks. In this paper, a novel approach integrating crisscross optimization algorithm and Monte Carlo simulation (CSO-MCS) is implemented to solve the optimal DG allocation (ODGA) problem. The feature of applying CSO to address the ODGA problem lies in three interacting operators, namely horizontal crossover, vertic...
متن کاملLoss of Load Expectation Assessment in Deregulated Power Systems Using Monte Carlo Simulation and Intelligent Systems
Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In this paper, generation reliability is considered, and a method for its assessment using intelligent systems is proposed. Also, because of power market and generators’ forced outages stochastic behavior, Monte Carlo Simulation is used for reliability evaluation. Generation r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sustainability
سال: 2023
ISSN: ['2071-1050']
DOI: https://doi.org/10.3390/su15010783